p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.494C23, C4.882- 1+4, C8:4(C4oD4), C8:6D4:22C2, C8:D4:55C2, C4:C4.383D4, C8:2Q8:31C2, Q8:Q8:23C2, D4:Q8:40C2, (C4xSD16):23C2, (C2xD4).333D4, C2.60(Q8oD8), C22:C4.66D4, D4:6D4.11C2, C4:C4.258C23, C4:C8.126C22, C4.77(C8:C22), (C2xC4).545C24, (C4xC8).195C22, (C2xC8).110C23, C23.350(C2xD4), C4:Q8.175C22, C2.98(D4:6D4), C2.D8.67C22, (C4xD4).185C22, (C2xD4).261C23, (C2xQ8).247C23, (C4xQ8).184C22, M4(2):C4:40C2, C4.Q8.139C22, D4:C4.84C22, C4:D4.110C22, C23.19D4:48C2, C23.48D4:36C2, C22:C8.104C22, (C22xC4).345C23, C22.805(C22xD4), C22:Q8.110C22, C22.50C24:9C2, Q8:C4.163C22, (C2xSD16).121C22, C42:C2.216C22, (C2xM4(2)).138C22, C4.127(C2xC4oD4), (C2xC4).629(C2xD4), C2.84(C2xC8:C22), (C2xC4:C4).694C22, SmallGroup(128,2085)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.494C23
G = < a,b,c,d,e | a4=b4=1, c2=d2=a2b2, e2=b2, ab=ba, cac-1=a-1, dad-1=ab2, eae-1=a-1b2, cbc-1=dbd-1=b-1, be=eb, dcd-1=bc, ece-1=a2b2c, ede-1=b2d >
Subgroups: 352 in 187 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, M4(2), SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4xC8, C22:C8, D4:C4, D4:C4, Q8:C4, Q8:C4, C4:C8, C4.Q8, C4.Q8, C2.D8, C2xC4:C4, C42:C2, C4xD4, C4xQ8, C4xQ8, C4:D4, C22:Q8, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4:Q8, C2xM4(2), C2xSD16, C2xC4oD4, M4(2):C4, C8:6D4, C4xSD16, C8:D4, D4:Q8, Q8:Q8, C23.19D4, C23.48D4, C8:2Q8, D4:6D4, C22.50C24, C42.494C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C8:C22, C22xD4, C2xC4oD4, 2- 1+4, D4:6D4, C2xC8:C22, Q8oD8, C42.494C23
Character table of C42.494C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2i | 0 | 0 | 0 | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | complex lifted from C4oD4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2i | 0 | 0 | 0 | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | complex lifted from C4oD4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2i | 0 | 0 | 0 | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | complex lifted from C4oD4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2i | 0 | 0 | 0 | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | complex lifted from C4oD4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8:C22 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8:C22 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | symplectic lifted from Q8oD8, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | symplectic lifted from Q8oD8, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 52 26 31)(2 49 27 32)(3 50 28 29)(4 51 25 30)(5 47 61 53)(6 48 62 54)(7 45 63 55)(8 46 64 56)(9 34 14 39)(10 35 15 40)(11 36 16 37)(12 33 13 38)(17 57 24 41)(18 58 21 42)(19 59 22 43)(20 60 23 44)
(1 55 28 47)(2 54 25 46)(3 53 26 45)(4 56 27 48)(5 52 63 29)(6 51 64 32)(7 50 61 31)(8 49 62 30)(9 59 16 41)(10 58 13 44)(11 57 14 43)(12 60 15 42)(17 39 22 36)(18 38 23 35)(19 37 24 34)(20 40 21 33)
(1 25 28 2)(3 27 26 4)(5 54 63 46)(6 45 64 53)(7 56 61 48)(8 47 62 55)(9 15 16 12)(10 11 13 14)(17 44 22 58)(18 57 23 43)(19 42 24 60)(20 59 21 41)(29 32 52 51)(30 50 49 31)(33 39 40 36)(34 35 37 38)
(1 16 26 11)(2 10 27 15)(3 14 28 9)(4 12 25 13)(5 24 61 17)(6 20 62 23)(7 22 63 19)(8 18 64 21)(29 34 50 39)(30 38 51 33)(31 36 52 37)(32 40 49 35)(41 53 57 47)(42 46 58 56)(43 55 59 45)(44 48 60 54)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,52,26,31)(2,49,27,32)(3,50,28,29)(4,51,25,30)(5,47,61,53)(6,48,62,54)(7,45,63,55)(8,46,64,56)(9,34,14,39)(10,35,15,40)(11,36,16,37)(12,33,13,38)(17,57,24,41)(18,58,21,42)(19,59,22,43)(20,60,23,44), (1,55,28,47)(2,54,25,46)(3,53,26,45)(4,56,27,48)(5,52,63,29)(6,51,64,32)(7,50,61,31)(8,49,62,30)(9,59,16,41)(10,58,13,44)(11,57,14,43)(12,60,15,42)(17,39,22,36)(18,38,23,35)(19,37,24,34)(20,40,21,33), (1,25,28,2)(3,27,26,4)(5,54,63,46)(6,45,64,53)(7,56,61,48)(8,47,62,55)(9,15,16,12)(10,11,13,14)(17,44,22,58)(18,57,23,43)(19,42,24,60)(20,59,21,41)(29,32,52,51)(30,50,49,31)(33,39,40,36)(34,35,37,38), (1,16,26,11)(2,10,27,15)(3,14,28,9)(4,12,25,13)(5,24,61,17)(6,20,62,23)(7,22,63,19)(8,18,64,21)(29,34,50,39)(30,38,51,33)(31,36,52,37)(32,40,49,35)(41,53,57,47)(42,46,58,56)(43,55,59,45)(44,48,60,54)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,52,26,31)(2,49,27,32)(3,50,28,29)(4,51,25,30)(5,47,61,53)(6,48,62,54)(7,45,63,55)(8,46,64,56)(9,34,14,39)(10,35,15,40)(11,36,16,37)(12,33,13,38)(17,57,24,41)(18,58,21,42)(19,59,22,43)(20,60,23,44), (1,55,28,47)(2,54,25,46)(3,53,26,45)(4,56,27,48)(5,52,63,29)(6,51,64,32)(7,50,61,31)(8,49,62,30)(9,59,16,41)(10,58,13,44)(11,57,14,43)(12,60,15,42)(17,39,22,36)(18,38,23,35)(19,37,24,34)(20,40,21,33), (1,25,28,2)(3,27,26,4)(5,54,63,46)(6,45,64,53)(7,56,61,48)(8,47,62,55)(9,15,16,12)(10,11,13,14)(17,44,22,58)(18,57,23,43)(19,42,24,60)(20,59,21,41)(29,32,52,51)(30,50,49,31)(33,39,40,36)(34,35,37,38), (1,16,26,11)(2,10,27,15)(3,14,28,9)(4,12,25,13)(5,24,61,17)(6,20,62,23)(7,22,63,19)(8,18,64,21)(29,34,50,39)(30,38,51,33)(31,36,52,37)(32,40,49,35)(41,53,57,47)(42,46,58,56)(43,55,59,45)(44,48,60,54) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,52,26,31),(2,49,27,32),(3,50,28,29),(4,51,25,30),(5,47,61,53),(6,48,62,54),(7,45,63,55),(8,46,64,56),(9,34,14,39),(10,35,15,40),(11,36,16,37),(12,33,13,38),(17,57,24,41),(18,58,21,42),(19,59,22,43),(20,60,23,44)], [(1,55,28,47),(2,54,25,46),(3,53,26,45),(4,56,27,48),(5,52,63,29),(6,51,64,32),(7,50,61,31),(8,49,62,30),(9,59,16,41),(10,58,13,44),(11,57,14,43),(12,60,15,42),(17,39,22,36),(18,38,23,35),(19,37,24,34),(20,40,21,33)], [(1,25,28,2),(3,27,26,4),(5,54,63,46),(6,45,64,53),(7,56,61,48),(8,47,62,55),(9,15,16,12),(10,11,13,14),(17,44,22,58),(18,57,23,43),(19,42,24,60),(20,59,21,41),(29,32,52,51),(30,50,49,31),(33,39,40,36),(34,35,37,38)], [(1,16,26,11),(2,10,27,15),(3,14,28,9),(4,12,25,13),(5,24,61,17),(6,20,62,23),(7,22,63,19),(8,18,64,21),(29,34,50,39),(30,38,51,33),(31,36,52,37),(32,40,49,35),(41,53,57,47),(42,46,58,56),(43,55,59,45),(44,48,60,54)]])
Matrix representation of C42.494C23 ►in GL6(F17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 9 | 15 | 15 |
0 | 0 | 9 | 8 | 15 | 2 |
0 | 0 | 2 | 2 | 8 | 8 |
0 | 0 | 2 | 15 | 8 | 9 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,9,9,2,2,0,0,9,8,2,15,0,0,15,15,8,8,0,0,15,2,8,9],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1,0,0,0] >;
C42.494C23 in GAP, Magma, Sage, TeX
C_4^2._{494}C_2^3
% in TeX
G:=Group("C4^2.494C2^3");
// GroupNames label
G:=SmallGroup(128,2085);
// by ID
G=gap.SmallGroup(128,2085);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,456,758,723,100,2019,346,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=d^2=a^2*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^2,e*a*e^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e^-1=a^2*b^2*c,e*d*e^-1=b^2*d>;
// generators/relations
Export